

Subproject Schedules

Michael Lindgren
Director's Review of BTeV Schedule
May 27, 2004

Overview – BTeV WBS

- WBS 3.0 C0 Outfitting
- WBS 2.0 Interaction Region
- WBS 1.0 BTeV Detector
 - ➤ WBS 1.1 Analysis magnet, Beampipes, Toroids
 - ➤ WBS 1.2 Pixel Detector
 - ➤ WBS 1.3 RICH
 - **>** WBS 1.4 − **EMCAL**
 - ➤ WBS 1.5 Muon System
 - ➤ WBS 1.6 Straw Tracker
 - ➤ WBS 1.7 Silicon Microstrip Tracker
 - ➤ WBS 1.8 **Trigger**
 - **▶** WBS 1.9 **Data Acquisition**
 - ➤ WBS 1.10 I & I

Summary of changes since last review

- Staging of Detector
- Uniform method of calculating schedule contingency
 - > Separation of construction and installation phases
 - "Ready by" date from construction phase
 - "Need by" date from installation requirements
 - Difference (work days) determines construction schedule contingency
 - > Total float held to end of project(minimal distributed contingency)
- Funding shifts between subprojects and Fiscal Years
- Increase scheduled installation time

- Site Construction: hardstands, utility pads, gas shed,...
- Mezzanine construction: walls, roofing, flooring, finishes (painting, carpeting), computer floor for counting room
- Elevators
- Cooling and HVAC: Chillers, Computer room cooling, Natural Gas
- Plumbing
- Electrical: lighting, substations, emergency generator, feeders
- Fire Detection
- This is conventional work that Fermilab knows well

C0 Outfitting Changes

- Begin Conceptual Design in FY04
 - ➤ Increases bid package schedule contingency by reducing Title 2 engineering design cycle
 - Phase 1 construction scheduled to begin late January '05
 - Need to do design work and make procurement by then
 - ➤ Reduces FY05 C0 expense ~\$250K
- Critical path is the work needed for beneficial
 Occupancy (Phase 1 construction)
 - Ready by Dec. 2005
 - ➤ Needed by July 2006
 - ➤ 157 days of schedule contingency
- Only schedule concern is delay in starting
- Tom Lackowski has details in breakout session

- Unstaged Critical activity (pixels, Stage 1 trigger, EMCAL)
- Use modified LHC quadrupoles
 - > Run at 4.5° K rather than the design 1.9° K.
 - ➤ The cryostat will be reduced in diameter so the magnet doesn't intersect the tunnel floor.
 - ➤ Fabricate 10 quadrupoles and spool pieces + spares
- Long lead-time procurements
 - > Superconducting wire
 - Corrector magnets
 - ➤ High current leads

IR Project Flow

WBS 2.0

- Critical path Spool production
 - > 9 months between "Ready by" and "Need by" dates
 - Gained 5 months by defining when needed more carefully
 - Net gain of 4 months in reworking task durations
 - Some shorter, some longer, all based on actual experience
- Cost decreased \$150K
- Profile changes from CD-1 review

Fiscal Year	2005	2006	2007	2008	2009	2010	П
Base M&S (\$K)	-10	+746	-747	-346	+285	+86	
Labor (FTE)	+0.5	+0.7	-0.8	-1.8	-4.5	+6.1	

- Need to make procurements by Jan. 2005 in current schedule
 - > PO for Superconducting wire
 - Cold mass components earlier, but might be able to shift

Analysis Magnet, Toroids, Beampipe WBS 1.3

- Unstaged system, which includes:
 - ➤ Dipole analysis magnet
 - ≥ 2 toroid assemblies
 - > beampipe
- Subproject scheduled completions are:
 - ➤ Magnets installed by Feb. 08 145 days float
 - ➤ Beam pipe installed in Summer 2009 311 days float
- Cost change
 - > +110K
- Minimal schedule risk here

- Unstaged Critical activity
- Technically challenging system
 - ≥ 23 Million Pixels
 - Bump bonding
 - ➤ Motion control
 - ➤ Large Vacuum system
- External vendors required for
 - > Sensors
 - ➤ Pixel readout ASIC's
 - Bump bonding
 - > HDI's
- Followed by extensive construction at SiDet

- CD-1 schedule contingency was 63 days
- Plan revisions enlarge that to 229 days, accomplished by:
 - > Substantial changes to funding profile
 - Advanced purchase schedule by 1 FY for some items
 - ➤ Combined preproduction and production orders for sensors, readout chips, and HDI's
 - ➤ Added 3 months to hybridization task
- Sensor order (Dec. 2004) can be delayed until March 1,
 2005 in the current schedule
- Contingency analysis done by increasing critical task durations by ~30%
 - ➤ Most have no effect on "ready by" date
 - ➤ 100 day delay in Hybridization results in ~50 day reduction in overall schedule contingency
- Total cost unchanged \$20.65M

- Staged Detector Gas first, then liquid
- CD-1 review had no major issues with RICH
- Schedule contingency was 78 days (MAPMT electronics, Gas detector)
- Contingency is now 197 days (liquid recirculation)
 - > Low schedule risk
- Delay in PMT acquisition to shift funds to electronics
- No change in cost
- Need to purchase tank structural material in FY05

Electromagnetic Calorimeter

WBS 1.4

- Staged Critical activity
- Lead Tungstate calorimeter
 - ➤ 10k crystals needed
 - Rad hard
 - ➤ Based on CMS experience
 - ➤ Readout using PMT's and QIE ASIC
- CD-1 schedule of crystal delivery was judged to have excessive schedule risk
 - Delays in CMS acquisition
 - ➤ Lengthy production cycle
- Increase schedule contingency:
 - ➤ Roll in 50% loaded EMCAL structure in Summer 2009
 - ➤ Insert remaining 50% in Summer 2010
 - ➤ Shifts funding to 2009 also helps cost profile

- Have always pursued multiple vendor strategy
 - > 50% in China and 50% in Russia(two vendors there)
- Schedule risk due to competition for crystals with CMS?
 - Default plan assumes
 - Chinese crystals begin production 2006, for a long duration
 - Russian crystals begin at higher rate upon completion of CMS production in 2007
 - > Discussion with CMS
 - Minimal impact on final delivery dates for BTeV
 - Might result in higher production rates and a later start
- For staged detector
 - > 50% loaded structure ready Summer 2008 229 days contingency
 - > 2nd 50% ready Sept. 24, 2009 191 days contingency

- Overall cost has increased \$400k
 - AccelerateChinese crystals
- Staging pushes costs into 2009
- Need to begin purchasing FE electronics(QIE ASIC) by May 2005 in current schedule

- Staged Detector
- Design is robust and simple
 - ➤ 38k 3/8" SS proportional tubes
 - ➤ Modular construction
 - > Common FE electronics w/ straws
- Will install stations 2 and 3 (behind toroid) in stage 1
- Base cost changed by \$412K from CD-1
 - ➤ Added QA tech + test stand
- Schedule contingency > 450 days for all 3 stations
- Scheduled to begin parts production in January '05
 - ➤ Delays in parts production and tube delivery, etc. introduce some delay in the "ready by" dates
 - ➤ Low overall schedule risk
- Staging limits schedule risk in first installation period

- Part of staged detector
- 7 independent systems makes staging straightforward
 - > Stage stations that do not require removal of ones installed earlier
 - > #1,2,5,6,7 Still provides excellent tracking in early running
- CD-1 schedule contingency presented was 46 days
- Current contingency is 218 days
 - "Need by" dates in two stages
 - ➤ Incorrect linking of predecessor in chamber construction start
 - ➤ 2 assembly lines -> 3
- Most stations have much greater contingency(>300 days)
- Schedules are robust against anticipated delays
- Need to begin final design work by March 2005 in current schedule
- Staging limits schedule risk in first installation period

- Cost increased \$285K
 - > +\$100K from updated quote on straw cost
 - > +\$180K additional staging fixtures
 - Reduce installation time from 1 week/station to 2 days/station

Forward Silicon Microstrip Detectors

WBS 1.7

- Staged detector
- No production schedule issues
- CD-1 review had no cost or schedule issues
- INFN will provide funding for this subproject
- Current contingency is 186 days
 - > Still limited by US funding start date
- Staging limits schedule risk in first installation period

- Staged system Critical activity
- Sophisticated system consists of:
 - ➤ Displaced Vertex trigger
 - > Muon trigger
 - ➤ Global Level 1
 - > Trigger management, switches, etc.
- CD-1 schedule contingency was less than 30 days in more than one place
- Greater schedule contingency needed:
 - Staging
 - > Funding profile advanced
- Current schedule contingency is 156 days

	FY05	FY06	FY07	FY08	FY09	Total
CD-1	637K	2,150K	2,651K	4,506K	7,103K	17,046K
Staged	783K	2,571K	2,230K	6,618K	4,972K	17,175K
Net Change	146K	421K	(421K)	2,112K	(2,131K)	129K

- To achieve greater schedule contingency the funding had to be accelerated
- Need to begin procurement of pre-pilot farm by Feb 2005 in current schedule
- Effect in delays at critical points can be seen in previous slide

- Staged System
- Composed of:
 - > Readout electronics
 - > DAQ software
 - > Detector control system
 - Databases
 - Control and Data network
- CD-1 showed 29 days float on Readout Electronics
- Greater schedule contingency needed
 - > Staged installation 50% in 1st shutdown, remainder in 2nd
 - > Advanced funding profile
- Current schedule contingency is 220 days

WBS 1.9 Project Flow Diagram

	FY05	FY06	FY07	FY08	FY09+10	Total
CD-1	393K	2,669K	3,571K	5,090K	4,614K	16337K
Staged	436K	2,662K	3,624K	5,955K	3,707K	16384K
Net Change	43K	(7K)	53K	865K	(907K)	+47K

- To achieve greater schedule contingency the funding had to be accelerated
- Production purchases come later in FY05 in current schedule for this group
- Effect in delays at critical points can be seen in previous slide
 - > Still a number of tasks very close to critical path

- The CD-1 committee recommended longer installation schedule
 - ➤ New staged schedule 17 weeks -> 30 weeks
 - > 50% of EMCAL crystals installed in assembly hall
 - > Staged tracking installation
 - ➤ Trigger and DAQ equipment installed in the Counting Room can be installed between two long shutdowns
 - ➤ Installation plans based on single shift 5-day/week operation
 - OT + Saturdays provide first line of schedule contingency
 - Go to double shifts if needed
 - ➤ Comparison KTeV's installation task
 - Took 6 months
 - Should have many infrastructure tasks already completed
- Cost increased \$2.1M Contingency increase to 75% and additional installation labor

- At CD-1 review Early annual shutdown activities
 - ➤ Many tasks scheduled for the earliest possible shutdown
 - provided little float
 - most could be scheduled for the next shutdown
- Revised so:
 - ➤ "Need By" date is "latest point in the latest shutdown" that component must move into the Collision Hall
- Detailed flow and linkages need careful, methodical time
 - > Subproject staging defined only recently
- BUT Doubling installation time will guarantee successful installation
 - ➤ Now compares favorably to similar experiments

• Installation order(pre-2009):

- > South (un-instrumented) toroid
- Vertex magnet
- > North toroid
- > RICH detector tank

2009 order;

- > ECAL structure
- ➤ North RICH MAPMT
- ➤ Pixel tank
- > Forward tracking beam pipe
- Forward tracking stations 1,2,5,6,7
- ➤ South RICH MAPMT

(quasi) independently

- ➤ Muon stations 2,3
- > Trigger and DAQ

Have installation plans for all subprojects with time estimates for task durations.

Example:

5k crystals to install in 12 week shutdown. Can install 600/per week in single shift, 2 crews. Could install 7k crystals in 12 week shutdown – 40% contingency

- 2010 shutdown installation
 - > Remaining two straw stations
 - > 3 strip stations will be installed to complete the forward tracking.
 - ➤ Muon station 1
 - ➤ Last three RICH PMT arrays
 - ≥ 2nd 50% of crystals loaded into EMCAL structure.
 - ➤ 2nd half of Trigger and DAQ will be installed
- Have retained 2-4 weeks contingency at the end of each scheduled shutdown activity through 2010

Summary

- There were many good schedule points made in Lehman review
- Our scheduling is strengthened by them
- To be credible:
 - > Substantial funding was shifted
 - Between projects
 - Into different Fiscal Years
 - Additional external funding
 - > Staging allows efficient usage of FY09 funds
 - Crystals, Trigger, DAQ
 - Correct calculation of end points and additional careful work on the schedule linkages, etc.

Summary

- Shortest Schedule contingencies
 - ➤ Toroids, dipole 145 Days
 - > Stage 1 Trigger 156 days
 - \triangleright C0 Phase 1 157 days
 - ➤ IR Spools 175 days
 - ➤ Stage 2 EMCAL 191 days
 - ➤ RICH liquid recirculation 197 days
 - ➤ Stage 1 DAQ 220 days
 - ➤ Pixel Detector 229 days
- IR Spools and Pixel detector determine if we can run the experiment.